avangard-pressa.ru

Задача с подвижными границами - Математика

При исследовании функционала (2.1) на экстремум предположим, что одна или обе граничные точки могут перемещаться по заданным кривым и . Эта задача называется задачей с подвижными границами. В этом случае класс допустимых кривых расширяется. Поэтому если на кривой достигается экстремум в задаче с подвижными границами, то экстремум тем более достигается по отношению к более узкому классу кривых, имеющих общие граничные точки с кривой . Следовательно, функция должна быть решением уравнения Эйлера, и все кривые , на которых реализуется экстремум в задаче с подвижными концами, должны быть экстремалями.

Общее решение уравнения Эйлера содержит две произвольные постоянные, для определения которых необходимо иметь два условия. В задаче с закрепленными концами такими условиями были и . В задаче с подвижными границами одно или оба эти условия отсутствуют. Недостающие условия для определения произвольных постоянных должны быть получены из основного необходимого условия экстремума - равенства нулю вариации .

Рис.2.5. Задача с подвижными концами
Рассмотрим следующую задачу с подвижными границами. Найти экстремум функционала

,

определенного на кривых, концы которых могут перемещаться по линиям и (рис. 2.5).

Искомые кривые (экстремали) должны удовлетворять уравнению Эйлера, поэтому в выражении для вариации функционала остается только внеинтегральный член. Учитывая, что

,

,

где и - бесконечно малые величины, имеем

.

Вариации независимой переменной и не равны нулю, поэтому выражения , должны обращаться в нуль:

, (2.13)

. (2.14)

Эти граничные условия называются условиями трансверсальности. Про искомую экстремаль говорят, что она трансверсальна кривым и . Условия трансверсальности позволяют определить две постоянные интегрирования после решения уравнения Эйлера.

Изопериметрическая задача

Изопериметрическими задачами в узком смысле этого слова называются задачи об отыскании геометрической фигуры максимальной площади при заданном периметре.

В настоящее время изопериметрическими задачами называется значительно более широкий класс задач, а именно, все вариационные задачи, в которых требуется определить экстремум функционала

,

при наличии так называемых изопериметрических условий

,

где - постоянные, а может быть больше, меньше или равно .

Рассмотрим следующую изопериметрическую задачу.

Среди всех кривых , удовлетворяющих условиям , , на которых функционал

,

найти такую, которая дает экстремум функционалу

.

Пусть и имеют непрерывные производные на отрезке . Предположим, что искомая кривая не является экстремалью , тогда имеет место теорема [1].

Теорема. Если кривая обеспечивает экстремум функционала и удовлетворяет условиям , , , но не является экстремалью , то существует такое число , что является экстремалью функционала

. (2.15)

Этот результат используется следующим образом. Составляется уравнение Эйлера для функционала . Получается дифференциальное уравнение второго порядка и находится его общее решение, которое содержит параметр и две произвольные постоянные. Эти три величины определяются из граничных условий и условия .